WEEKLY TEST TYJ-02 TEST -9 RAJ PUR ROAD SOLUTION Date 22-09-2019

[PHYSICS]

1. According to free body diagram of blockA,
$\mathrm{F}-\mathrm{T}_{1}=\mathrm{m}_{1} \mathrm{a}$
$\mathrm{T}_{1}-\mathrm{T}_{2}=\mathrm{m}_{2} \mathrm{a}$
$\mathrm{T}_{2}=\mathrm{m}_{3} \mathrm{a}$
Addding all the three eqns., we get
$F=\left(m_{1}+m_{2}+m_{3}\right) a \quad$ or $\quad a=\frac{F}{m_{1}+m_{2}+m_{2}}$

$=\frac{14}{4+2+1}$
Putting in eqn. (i), contact force between A and B is
$\mathrm{T}_{1}=\mathrm{F}-\mathrm{m}_{1} \mathrm{a}=14-4 \times 2=6 \mathrm{~N}$
Hence, correct option is (a)
2. Time periof of a simple pendulum is given :
$\mathrm{T}=2 \pi \sqrt{\frac{l}{\mathrm{~g}}}$ or $\mathrm{T} \propto \sqrt{\frac{l}{\mathrm{~g}}}$
When the elevator is accelerating downwards, then net gravitational acceleration is $(\mathrm{g}-\mathrm{a})$. So, the time period when elevator is accelerating downwards, is greatest.
3. As per Newton's third law of motion, when a horse pulls a wagon, the force that causes the horse to move forward is the force the ground exerts on it.
4.

$F=\frac{d}{d t}(M v)=v \frac{d M}{d t}+M \frac{d v}{d t}$
As v is a constant, $F=v \frac{d M}{d t}$
But $\frac{d M}{d t}=M \mathrm{~kg} / \mathrm{s}$
$\therefore \quad$ To keep the conveyer belt moving at $\mathrm{v} \mathrm{m} / \mathrm{s}$,
Force needed = vM newton
5.
6. $\quad \mathrm{F}-\mathrm{Mg}=\mathrm{Ma}$
$8000=2000 \mathrm{a}$
$\therefore \quad$ Acceleration is $4 \mathrm{~ms}^{-2}$ upwards
7. Considering free-body diagrams of the masses, we have
$T-3 g=3 a \quad$ and $5 g-T=5 a$
Solving for T, we have
T = (15/4) g
$\therefore \quad F=$ Force on the pulley
$=2 \mathrm{~T}=2 \times \frac{15}{4}=7.5 \mathrm{~kg} \mathrm{f}$
8. Change in momentum in one sec, i.e.,
$\mathrm{F}=$ change in momentum per bullet \times no. of bullets fired per second
$=m v \times n=m n v$
9. $\quad T_{2}=\frac{6}{6+6+6} F=\frac{F}{3}$
10. For a body to the equilibrium, it should exist both in translational equilibrium.

For translational equilibruim, $\Sigma \mathrm{F}=0$
and for rotational equilibrium, $\Sigma \tau=0$
11. Acceleration of the mass $m_{3}=$ common acceleration of the system $=\frac{F}{\text { total mass }}=\frac{F}{m_{1}+m_{2}+m_{2}}$
12. One of the weights given a reading and the other prevents the acceleration of the styem. Therefore, the reading is not zero but 10 N .
13. Equations of motion are :

$$
\begin{align*}
& \mathrm{F}-\mathrm{T}_{1}=2 \mathrm{a} \tag{i}\\
& \mathrm{~T}_{1}-\mathrm{T}_{2}=3 \mathrm{a} \tag{ii}\\
& \mathrm{~T}_{2}=5 \mathrm{a}
\end{align*}
$$

Adding all above equations, wet:
$\mathrm{F}=10 \mathrm{a}=10 \times 1=10 \mathrm{~N}$
14. The tension in the string between P and Q accelerates double the mass as compared to that between A and R. Hence, tension between P and $Q=2 \times$ tension between Q and R
15. $\quad \mathrm{T} \cos \theta=\mathrm{T}_{1}=10 \times \mathrm{g}$
$\mathrm{T} \sin \theta=98$
$\therefore \quad \tan \theta=\frac{98}{10 \times 9.8}=1 \quad$ or $\theta=45^{\circ}$

[CHEMISTRY]

16.
17.

3-Ethyl-4, 4-dimethylheptane
18.

19.

(2-Propyl) cyclobutane

AVIRAL CLASSES

creating scholars

The compound can be expanded as

IUPAC name is 3, 4, 4-trimethyloctane.
21.

3, 3-Dimethyl cyclohexan-1-ol is the proper IUPAC name as per 1993 rules. The given answer is as per the old IUPAC rules, still prevalent.
22.

3-Bromo-1-chlorocyclohexene
23.

3-Chloro-4-fluoro-3, 4-dimethylhexane
24.

Butane-1,2, 4-tricarboxylic acid
25.

3,3-Dimethylbutanoyl chloride
26.

3-Cyanopropanamide
27.

28.

2-(Prop-1-yl) propane-1, 3-dioic acid
29.

30.

Its trivial name is cinnamic acid.

